SU-E-T-113: Volume Effect Correction Factor KV for Small-Field Photon Dosimetry with Ionization Chambers.

نویسندگان

  • H K Looe
  • T S Stelljes
  • D Harder
  • B Poppe
چکیده

PURPOSE The volume effect of ionization chambers gives rise to a spatial averaging effect that can be expressed mathematically as the convolution of the true dose profile with the detector's response function. The latter has been shown to be best described by Gaussian distribution. Based on this knowledge, the volume effect correction factor kV is derived. METHODS To derive kV, a sixth degree polynomial is fitted to the true dose profile: D(x) = a0 + a2×2 + a4×4 + a6×6. The measured dose profile M(x) is calculated as the convolution product of D(x) with a one-dimensional normalized Gauss function with standard deviation s. Therefore kV at the dose maximum has the value D(0)/M(0), which is a function of the coefficients a0,2,4,6 and the detector specific s. In the case where D(x) is unknown, kV can be derived analogously from M(x) so that M(x) = b0 + b2×2 + b4×4 + b6×6, where kV can now be expressed as a function of the coefficients b0,2,4,6 and s. RESULTS The magnitudes of kV,lat and kV,long were calculated for 1 to 5 cm dose profiles using measured s values, both in the lateral and the longitudinal directions, for a set of common ionization chambers. At field widths above 2 cm, the values of kV,lat fall below 1.01 for all the chambers evaluated, whereas it needs field widths above 4 cm to get all values of kV,long below 1.01. Since the detector's signal is integrated over the sensitive volume, the total kV can be calculated as kV,total = kV,lat . kV,long. CONCLUSIONS In this work, a correction is developed to eliminate the volume effect of ionization chambers when they are positioned in the maxima of dose profiles, particularly for the performance of output factor measurements for the calibration of narrow photon beams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Point of Measurement in Cylindrical Ion Chamber for Megavoltage Photon Beams

Introduction For dose measurement in Megavoltage (MV) photon beams with ion chambers, the effect of volume occupied by the air cavity is not negligible. Therefore, the result of measurement should be corrected with a displacement perturbation correction factor (Pdis) or using an effective point of measurement (EPOM). The aim of this study is to calculate the EPOM for cylindrical ion chamber and...

متن کامل

Some steps towards establishing a tertiary standard dosimetry laboratory at a radiotherapy department

Background: In order to deliver the precise dose to the target in radiotherapy, absorbed dose to water at the reference point should be assessed. When the calibration procedure is performed for a reference dosimeter in the 60Co beam of a Secondary Standard Dosimetry Laboratory (SSDL), the total uncertainty in absorbed dose to water (Dw) is estimated to be approximately 1.5%. This study attempts...

متن کامل

Dosimetric Evaluation of Linac Photon Small Fields using MAGIC Polymer Gels

Introduction: In radiotherapy, methods of treatment planning are becoming increasingly more complicated. This requires verification of the doses delivered to increasingly smaller and more precise regions. Radiotherapy techniques are continuously employing smaller and smaller field sizes to deliver tighter radiation doses with higher therapeutic ratios, generating interest among researchers to p...

متن کامل

Small photon field dosimetry using EBT2 Gafchromic film and Monte Carlo simulation

Background: Small photon fields are increasingly used in modern radiotherapy especially in intensity modulated radiation therapy (IMRT) and stereotactic radiosurgery (SRS) treatments. Accurate beam profile and central axis depth doses measurements of such beams are complicated due to the electron disequilibrium. Hence the EBT2 (external beam therapy) Gafchromic film was used for dosimetry of sm...

متن کامل

SU-E-T-15: Small and Nonstandard Photon Field Dosimetry Characterization Using Monte Carlo Methods.

PURPOSE To quantify uncertainty reduction in small photon field dosimetry through characterization of ionization chambers and calibration conditions using detailed Monte Carlo methods benchmarked against NIST-traceable measurements. METHODS Phase space profiles were obtained using detailed EGSnrc Monte Carlo models for a Varian 6 MV photon linear accelerator, and a NIST-traceable cobalt-60 te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 39 6Part11  شماره 

صفحات  -

تاریخ انتشار 2012